Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.353
Filtrar
1.
Front Med (Lausanne) ; 11: 1391327, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38651068

RESUMO

Introduction: Myopia is causing a major public health concern, with its prevalence increasing globally. This study aimed to discuss posterior chamber phakic intraocular lens (pIOL) research publication trends and hotspots over the past 20 years. Methods: Bibliometric analysis was performed using the Web Science Core Collection to investigate posterior-chamber pIOL research publication trends. The extracted records were analyzed, and a knowledge map was built using VOSviewer v.1.6.20. The analysis included visualizing the annual publication count, countries/regions distribution, international and institutional collaborations, author productivity, and journal contribution, in addition to identifying knowledge bases and hotspots. Burst keywords were extracted using CiteSpace v.6.1.R. Results: In total, 791 articles on posterior chamber pIOLs published between 2003 and 2023 were retrieved. China had the highest number of publications, whereas Japanese papers received the most citations. Fudan University had the highest number of publications, with articles from Kitasato University having the highest number of citations. Regarding individual research, Xingtao Zhou has published the most significant number of articles, and Shimizu Kimiya had the highest number of citations. The top productive/influential journal was 'Journal of Cataract & Refractive Surgery'. The top cited references primarily focused on reporting the clinical outcomes of implantable collamer lens (ICL) for individuals with moderate to high myopia. The keywords primarily formed four clusters: posterior chamber pIOL clinical outcomes for myopic astigmatism correction, posterior chamber pIOL implantation complications, ICL size selection and postoperative vault predictions, and postoperative visual quality following posterior chamber pIOL implantation. Conclusion: This study presents the first bibliometric analysis of research trends in posterior chamber pIOL over the past two decades. We investigated the current state and emerging trends of global collaboration and research focal points in this field, offering fresh insights and guidance for researchers.

2.
Pest Manag Sci ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578108

RESUMO

BACKGROUND: Bacterial virulence factors are involved in various biological processes and mediate persistent bacterial infections. Focusing on virulence factors of phytopathogenic bacteria is an attractive strategy and crucial direction in pesticide discovery to prevent invasive and persistent bacterial infection. Hence, discovery and development of novel agrochemicals with high activity, low-risk, and potent anti-virulence is urgently needed to control plant bacterial diseases. RESULTS: A series of novel ß-hydroxy pyridinium cation decorated pterostilbene derivatives were prepared and their antibacterial activities against Xanthomonas oryzae pv. oryzae (Xoo) were systematacially assessed. Among these pterostilbene derivatives, compound 4S exhibited the best antibacterial activity against Xoo in vitro, with an half maximal effective concentration (EC50) value of 0.28 µg mL-1. A series of biochemical assays including scanning electron microscopy, crystal violet staining, and analysis of biofilm formation, swimming motility, and related virulence factor gene expression levels demonstrated that compound 4S could function as a new anti-virulence factor inhibitor by interfering with the bacterial infection process. Furthermore, the pot experiments provided convinced evidence that compound 4S had the high control efficacy (curative activity: 71.4%, protective activity: 72.6%), and could be used to effectively manage rice bacterial leaf blight in vivo. CONCLUSION: Compounds 4S is an attractive virulence factor inhibitor with potential for application in treating plant bacterial diseases by suppressing production of several virulence factors. © 2024 Society of Chemical Industry.

3.
Arch Insect Biochem Physiol ; 115(4): e22111, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38628055

RESUMO

In insects, the expression of 20E response genes that initiate metamorphosis is triggered by a pulse of 20-hydroxyecdysone (20E). The 20E pulse is generated through two processes: synthesis, which increases its level, and inactivation, which decreases its titer. CYP18A1 functions as an ecdysteroid 26-hydroxylase and plays a role in 20E removal in several representative insects. However, applying 20E degradation activity of CYP18A1 to other insects remains a significant challenge. In this study, we discovered high levels of Hvcyp18a1 during the larval and late pupal stages, particularly in the larval epidermis and fat body of Henosepilachna vigintioctopunctata, a damaging Coleopteran pest of potatoes. RNA interference (RNAi) targeting Hvcyp18a1 disrupted the pupation. Approximately 75% of the Hvcyp18a1 RNAi larvae experienced developmental arrest and remained as stunted prepupae. Subsequently, they gradually turned black and eventually died. Among the Hvcyp18a1-depleted animals that successfully pupated, around half became malformed pupae with swollen elytra and hindwings. The emerged adults from these deformed pupae appeared misshapen, with shriveled elytra and hindwings, and were wrapped in the pupal exuviae. Furthermore, RNAi of Hvcyp18a1 increased the expression of a 20E receptor gene (HvEcR) and four 20E response transcripts (HvE75, HvHR3, HvBrC, and HvαFTZ-F1), while decreased the transcription of HvßFTZ-F1. Our findings confirm the vital role of CYP18A1 in the pupation, potentially involved in the degradation of 20E in H. vigintioctopunctata.


Assuntos
Besouros , Proteínas de Insetos , Animais , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Besouros/genética , Larva/genética , Larva/metabolismo , Insetos/metabolismo , Metamorfose Biológica , Ecdisterona/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Interferência de RNA , Pupa/genética , Pupa/metabolismo
4.
Environ Int ; 186: 108632, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38583296

RESUMO

Plastic fragments are widely found in the soil profile of terrestrial ecosystems, forming plastic footprint and posing increasing threat to soil functionality and carbon (C) footprint. It is unclear how plastic footprint affects C cycling, and in particularly permanent C sequestration. Integrated field observations (including 13C labelling) were made using polyethylene and polylactic acid plastic fragments (low-, medium- and high-concentrations as intensifying footprint) landfilling in soil, to track C flow along soil-plant-atmosphere continuum (SPAC). The result indicated that increased plastic fragments substantially reduced photosynthetic C assimilation (p < 0.05), regardless of fragment degradability. Besides reducing C sink strength, relative intensity of C emission increased significantly, displaying elevated C source. Moreover, root C fixation declined significantly from 21.95 to 19.2 mg m-2, and simultaneously root length density, root weight density, specific root length and root diameter and surface area were clearly reduced. Similar trends were observed in the two types of plastic fragments (p > 0.05). Particularly, soil aggregate stability was significantly lowered as affected by plastic fragments, which accelerated the decomposition rate of newly sequestered C (p < 0.05). More importantly, net C rhizodeposition declined averagely from 39.77 to 29.41 mg m-2, which directly led to significant decline of permanent C sequestration in soil. Therefore, increasing plastic footprint considerably worsened C footprint regardless of polythene and biodegradable fragments. The findings unveiled the serious effects of plastic residues on permanent C sequestration across SPAC, implying that current C assessment methods clearly overlook plastic footprint and their global impact effects.


Assuntos
Pegada de Carbono , Plásticos , Solo , Solo/química , Carbono/análise , Atmosfera/química , Ciclo do Carbono , Ecossistema , Plantas , Sequestro de Carbono , Monitoramento Ambiental/métodos
5.
Cureus ; 16(3): e55682, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38586713

RESUMO

Objective This population-based cross-sectional study aimed to investigate the association between thyroid hormones and renal function in euthyroid Chinese individuals, as the relationship between thyroid hormones and renal function in this population remains unclear. Methods A total of 661 participants were included in the study after excluding individuals with thyroid diseases, incomplete clinical measurements, or those taking medications affecting thyroid function. Participants were categorized into three groups based on serum thyroid hormone and antibody levels. The study adjusted for covariates and assessed the glomerular filtration rate (GFR) and urine albumin-to-creatinine ratio (ACR) in relation to thyroid hormone levels. Results After adjusting for covariates, the study found a significant increase in GFR in the middle and highest tertiles of free triiodothyronine (FT3) and the highest tertile of total triiodothyronine (TT3). Serum FT3 and TT3 levels were significantly associated with GFR. Additionally, the study observed a significantly lower GFR in the highest tertile of thyroid-stimulating hormone (TSH) compared to the lowest tertile. However, thyroid hormone and antibody levels were not associated with the ACR. Furthermore, the highest tertiles of TT3 and total thyroxine (TT4) were associated with a decreased risk of chronic kidney disease (CKD). Conclusion In our study among euthyroid Chinese individuals, we observed a significant association between thyroid function and GFR. Specifically, lower FT3, TT3, and higher TSH were associated with reduced GFR, indicating a potential role for thyroid hormones in maintaining renal function. Furthermore, lower levels of TT3 and TT4 were associated with an increased risk of CKD. These findings suggest a direct link between thyroid and renal function, even in euthyroid individuals, emphasizing the need for further investigation to elucidate the underlying mechanisms and potential therapeutic implications.

6.
Aesthet Surg J ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662744

RESUMO

BACKGROUND: 3D facial stereophotogrammetry, as a convenient, non-invasive and highly reliable evaluation tool, has shown great potential in pre-operative planning and treatment efficacy evaluation of plastic surgery in recent years. However, it requires manual identification of facial landmarks by trained evaluators to obtain anthropometric data, which consumes large amount of time and effort. Automatic 3D facial landmark localization may facilitate fast data acquisition and eliminate evaluator error. OBJECTIVES: In this paper, we propose a novel deep-learning method based on dimension-transformation and key-point detection for automated 3D perioral landmark annotation. METHODS: The 3D facial model is transformed into 2D images on which High-Resolution Network is implemented for key point detection. The 2D coordinates of key points are then mapped back to the 3D model using mathematical methods to obtain the 3D landmark coordinates. This program was trained with 120 facial models and validated in 50 facial models. RESULTS: Our approach achieved satisfactory accuracy of 1.30 ± 0.68 mm error in landmark detection with an average processing time of 5.2 ± 0.21 seconds per model. And subsequent analysis based on these landmarks showed an error of 0.87 ± 1.02 mm for linear measurements and 5.62 ± 6.61° for angular measurements. CONCLUSIONS: This automated 3D perioral landmarking method could serve as an effective tool that enables fast and accurate anthropometric analysis of lip morphology for plastic surgery and aesthetic procedures.

7.
Angew Chem Int Ed Engl ; : e202400230, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38520070

RESUMO

Hydrogels hold great promise as electrolytes for emerging aqueous batteries, for which establishing a robust electrode-hydrogel interface is crucial for mitigating side reactions. Conventional hydrogel electrolytes fabricated by ex situ polymerization through either thermal stimulation or photo exposure cannot ensure complete interfacial contact with electrodes. Herein, we introduce an in situ electropolymerization approach for constructing hydrogel electrolytes. The hydrogel is spontaneously generated during the initial cycling of the battery, eliminating the need of additional initiators for polymerization. The involvement of electrodes during the hydrogel synthesis yields well-bonded and deep infiltrated electrode-electrolyte interfaces. As a case study, we attest that, the in situ-formed polyanionic hydrogel in Zn-MnO2 battery substantially improves the stability and kinetics of both Zn anode and porous MnO2 cathode owing to the robust interfaces. This research provides insight to the function of hydrogel electrolyte interfaces and constitutes a critical advancement in designing highly durable aqueous batteries.

8.
Int J Biol Macromol ; 264(Pt 2): 130768, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467228

RESUMO

Lanthanide luminescent hydrogels have broad application prospects in various fields. However, most of lanthanide hydrogels possess relatively simple functions, which is not conducive to practical applications. Therefore, it is becoming increasingly urgent to develop multifunctional hydrogels. Herein, a multifunctional chitosan-based lanthanide luminescent hydrogel with ultra-stretchability, multi-adhesion, excellent self-healing, emission color tunability, and good antibacterial ability was prepared by a simple one-step free radical polymerization. In this work, our designed lanthanide complexes [Ln(4-VDPA)3] contain three reaction sites, which can be copolymerized with N-[tris(hydroxymethyl) methyl] acrylamide (THMA), acrylamide (AM), and diacryloyl poly(ethylene glycol) (DPEG) to form the first chemical crosslinking network, while hydroxypropyltrimethyl ammonium chloride chitosan (HACC) interacts with the hydroxyl and amino groups derived from the chemical crosslinking network through hydrogen bonds to form the second physical crosslinking network. The structure of the double network as well as the dynamic hydrogen bond and lanthanide coordination endow the hydrogel with excellent stretchability, adhesion and self-healing properties. Moreover, the introduction of lanthanide complexes and chitosan makes the hydrogel exhibit outstanding luminescence and antibacterial performances. This research not only realizes the simple synthesis of multifunctional luminescent hydrogels, but also provides a new idea for the fabrication of biomass-based hydrogels as intelligent and sustainable materials.


Assuntos
Quitosana , Elementos da Série dos Lantanídeos , Prunella , Hidrogéis , Luminescência , Acrilamida , Antibacterianos/farmacologia , Aderências Teciduais
9.
Inorg Chem ; 63(14): 6192-6201, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38518256

RESUMO

Fe2O3 is a promising semiconductor for photoelectrochemical (PEC) water decomposition. However, severe charge recombination problems limit its applications. In this study, a F-Fe2O3-x/MoS2 nanorod array photoanode was designed and prepared to facilitate charge separation. Detailed characterization and experimental results showed that F doping in Fe2O3 regulated the electronic structure to improve the conductivity of Fe2O3 and induced abundant oxygen vacancies to increase the carrier concentration and promote charge separation in bulk. In addition, the internal electric field between F-Fe2O3-x and MoS2 facilitated the qualitative transfer of the photogenerated charge, thus inhibiting their recombination. The synergistic effect between the oxygen vacancy and F-Fe2O3-x/MoS2 heterojunction significantly enhanced the PEC performance of Fe2O3. This study provides a universal strategy for designing other photoanode materials with high-efficiency charge separation.

10.
Cell Rep ; 43(3): 113905, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38446660

RESUMO

Motivation-driven mating is a basic affair for the maintenance of species. However, the underlying molecular mechanisms that control mating motivation are not fully understood. Here, we report that NRG1-ErbB4 signaling in the medial amygdala (MeA) is pivotal in regulating mating motivation. NRG1 expression in the MeA negatively correlates with the mating motivation levels in adult male mice. Local injection and knockdown of MeA NRG1 reduce and promote mating motivation, respectively. Consistently, knockdown of MeA ErbB4, a major receptor for NRG1, and genetic inactivation of its kinase both promote mating motivation. ErbB4 deletion decreases neuronal excitability, whereas chemogenetic manipulations of ErbB4-positive neuronal activities bidirectionally modulate mating motivation. We also identify that the effects of NRG1-ErbB4 signaling on neuronal excitability and mating motivation rely on hyperpolarization-activated cyclic nucleotide-gated channel 3. This study reveals a critical molecular mechanism for regulating mating motivation in adult male mice.


Assuntos
Motivação , Transdução de Sinais , Camundongos , Masculino , Animais , Neurônios/metabolismo , Receptor ErbB-4/metabolismo , Tonsila do Cerebelo/metabolismo , Neuregulina-1/metabolismo
11.
BMC Chem ; 18(1): 46, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38449054

RESUMO

Pest disasters which occurs on crops is a serious problem that not only cause crop yield loss or even crop failure but can also spread a number of plant diseases.Sulfonate derivatives have been widely used in insecticide and fungicide research in recent years. On this basis, a series of sulfonate derivatives bearing an amide unit are synthesized and the biological activities are evaluated. The bioassay results showed that compounds A8, A13, A16, B1, B3, B4, B5, B10, B12 - 20, C3, C5, C9, C10, C14, C15, C17 and C19 showed 100% activity at a concentration of 500 µg/mL against the Plutella xylostella (P. xylostella). Among them, B15 which contains a thiadiazole sulfonate structure still shows 100% activity at 50 µg/mL concentration against P. xylostella and had the lowest median lethal concentration (LC50) (7.61 µg/mL) among the target compounds. Further mechanism studies are conducted on compounds with better insecticidal activity. Molecular docking results shows that B15 formed hydrophobic interactions π-π and hydrogen bonds with the indole ring of Trp532 and the carboxyl group of Asp384, respectively, with similar interaction distances or bond lengths as those of diflubenzuron. Moreover, chitinase inhibition assays are performed to further demonstrate its mode of action. In addition, the anti-bacterial activity of the series of compounds is also tested and the results showed that the series of compounds has moderate biological activity against Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc), with inhibition rates of 91%, 92% and 92%, 88% at the concentration of 100 µg/mL, respectively. Our study indicates that B15 can be used as a novel insecticide for crop protection.

12.
J Pharm Pharmacol ; 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521537

RESUMO

OBJECTIVES: The effects of wild Cordyceps proteins (WCPs) on the gut microbiota and the immune system of MRL/lpr mice were studied. METHODS: The effects of WCP on serum metabolic indexes (total triglyceride, total cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol) content was measured by a biochemical analyzer. CD4+, CD8+ cells, intestinal inflammation, and intestinal barrier function in MRL/lpr mice were measured by flow cytometry, 16S ribosomal RNA, western blot, and quantitative real-time polymerase chain reaction RT-PCR. KEY FINDINGS: The results showed that after the intervention of WCP, the content of CD4+ cells in lupus mice increased, and the levels of proinflammatory cytokines were down-regulated, such as tumor necrosis factor-α and interleukin-6. Secondly, WCP up-regulated the proteins and mRNA levels of ZO-1, Claudin-1, and Occludin. Thirdly, it also increased the Firmicutes/Bacteroidetes ratio and the abundance of Oscillospirales, Lachnospirales, Lachnospiraceae, and Clostridia, as well as negatively regulated the MAPK/NF-кB signaling pathway in lupus nephritis (LN) mice. CONCLUSIONS: These findings suggested that WCP may improve the symptoms of LN by altering immune factors and the intestinal barrier.

13.
Chem Biodivers ; : e202400408, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441384

RESUMO

To develop novel bacterial biofilm inhibiting agents, a series of 1,3,4-thiadiazole derivatives containing sulfonylpiperazine structures were designed, synthesized, and characterized using 1H nuclear magnetic resonance (1H NMR), 13C nuclear magnetic resonance (13C NMR), and high-resolution mass spectrometry. Meanwhile, their biological activities were evaluated, and the ensuing structure-activity relationships were discussed. The bioassay results showed the substantial antimicrobial efficacy exhibited by most of the compounds. Among them, compound A24 demonstrated a strong efficacy with an EC50 value of 7.8 µg/mL in vitro against the Xanthomonas oryzae pv. oryzicola (Xoc) pathogen, surpassing commercial agents thiodiazole copper (31.8 µg/mL) and bismerthiazol (43.3 µg/mL). Mechanistic investigations into its anti-Xoc properties revealed that compound A24 operates by increasing the permeability of bacterial cell membranes, inhibiting biofilm formation and cell motility, and inducing morphological changes in bacterial cells. Importantly, in vivo tests showed its excellent protective and curative effects on rice bacterial leaf streak. Besides, molecular docking showed that the hydrophobic effect and hydrogen-bond interactions are key factors between the binding of A24 and AvrRxo1-ORF1. Therefore, these results suggest the utilization of 1,3,4-thiadiazole derivatives containing sulfonylpiperazine structures as a bacterial biofilm inhibiting agent, warranting further exploration in the realm of agrochemical development.

14.
HPB (Oxford) ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38485565

RESUMO

BACKGROUND: Anatomical sectionectomy based on Takasaki's segmentation has shown advantages in hepatocellular carcinoma. However, whether this approach improves the survival of intrahepatic cholangiocarcinoma (ICC) remains unknown. METHODS: A series of 248 consecutive patients with solitary ICCs who underwent hepatectomy were studied retrospectively. The patients were classified into the groups of anatomical sectionectomy based on Takasaki's segmentation (TS group) and non-Takasaki's hepatectomy (NTH group). The bias between the two groups was minimized using propensity score matching (PSM). Recurrence-free survival (RFS) and overall survival (OS) were evaluated with Kaplan-Meier analysis. The Cox proportional hazards model was performed to determine the adverse risk factors associated with survival. RESULTS: After PSM, 67 pairs of patients were compared. Both the RFS and OS rates in the TS group were significantly better than those in the NTH group (23.2 % vs. 16.5 %, and 40.4 % vs. 27.3 %, P = 0.035 and 0.032, respectively). Multivariate analysis showed that NTH was independently associated with worse RFS and OS than TS. The stratified analysis demonstrated that the RFS and OS rates in the TS group with tumor stage I and tumor size ≥3 cm were significantly better than those in the NTH group, while the survival rates for ICC with stage I and tumor size <3 cm or stage II-III showed no significant difference. CONCLUSION: TS was associated with improved RFS and OS in patients with solitary ICC even after PSM. TS may be preferred particularly in patients with tumor stage I and tumor size ≥3 cm.

15.
Cancer Res ; 84(6): 855-871, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38486485

RESUMO

Immune checkpoint inhibitors (ICI) transformed the treatment landscape of hepatocellular carcinoma (HCC). Unfortunately, patients with attenuated MHC-I expression remain refractory to ICIs, and druggable targets for upregulating MHC-I are limited. Here, we found that genetic or pharmacologic inhibition of fatty acid synthase (FASN) increased MHC-I levels in HCC cells, promoting antigen presentation and stimulating antigen-specific CD8+ T-cell cytotoxicity. Mechanistically, FASN inhibition reduced palmitoylation of MHC-I that led to its lysosomal degradation. The palmitoyltransferase DHHC3 directly bound MHC-I and negatively regulated MHC-I protein levels. In an orthotopic HCC mouse model, Fasn deficiency enhanced MHC-I levels and promoted cancer cell killing by tumor-infiltrating CD8+ T cells. Moreover, the combination of two different FASN inhibitors, orlistat and TVB-2640, with anti-PD-L1 antibody robustly suppressed tumor growth in vivo. Multiplex IHC of human HCC samples and bioinformatic analysis of The Cancer Genome Atlas data further illustrated that lower expression of FASN was correlated with a higher percentage of cytotoxic CD8+ T cells. The identification of FASN as a negative regulator of MHC-I provides the rationale for combining FASN inhibitors and immunotherapy for treating HCC. SIGNIFICANCE: Inhibition of FASN increases MHC-I protein levels by suppressing its palmitoylation and lysosomal degradation, which stimulates immune activity against hepatocellular carcinoma and enhances the efficacy of immune checkpoint inhibition.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Antígeno B7-H1/metabolismo , Carcinoma Hepatocelular/genética , Linhagem Celular , Ácido Graxo Sintase Tipo I , Neoplasias Hepáticas/genética , Proteínas
16.
Front Surg ; 11: 1337668, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505406

RESUMO

Purpose: This study aimed to demonstrate the application of orthotopic bone flap transplantation with a fibula transplantation (OBFT-FT) in open-wedge high tibial osteotomy (OW-HTO) and to assess the effect of OBFT-FT on gap healing. Patients and methods: From January to July 2020, 18 patients who underwent OW-HTO with OBFT-FT were reviewed for this study. Demographics, postoperative complications, and radiological and clinical outcomes of patients were collected. Finally, the clinical outcomes of patients were analyzed. Results: A total of 14 patients were included in this study. The average age and body mass index were 59.6 ± 9.2 years and 28.1 ± 4.5 kg/m2, respectively. The average correction angle and gap width were 9.5 ± 1.8° and 10.2 ± 2.7 mm, respectively. The rates of radiological gap healing at sixth week, third month, and sixth month were 42.9%, 85.7%, and 100%, respectively. The mean Lysholm score, International Knee Documentation Committee score, and visual analog scale scores at sixth-month follow-up were significantly better than the preoperative scores (p < 0.001, p < 0.001, p = 0.001, respectively). And, no delayed union or non-union, collapse, loss of correction, or surgical site infection were found. Conclusions: As a new technique for autologous bone graft, the OBFT-FT could be successfully applied in the treatment of gap healing after OW-HTO, and excellent radiological and clinical outcomes could be seen on patients' short-term follow-up.

17.
Adv Sci (Weinh) ; : e2308590, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509840

RESUMO

Pelvic organ prolapse (POP) is one of the most common pelvic floor dysfunction disorders worldwide. The weakening of pelvic connective tissues initiated by excessive collagen degradation is a leading cause of POP. However, the patches currently used in the clinic trigger an unfavorable inflammatory response, which often leads to implantation failure and the inability to simultaneously reverse progressive collagen degradation. Therefore, to overcome the present challenges, a new strategy is applied by introducing puerarin (Pue) into poly(l-lactic acid) (PLLA) using electrospinning technology. PLLA improves the mechanical properties of the patch, while Pue offers intrinsic anti-inflammatory and pro-collagen synthesis effects. The results show that Pue is released from PLLA@Pue in a sustained manner for more than 20 days, with a total release rate exceeding 80%. The PLLA@Pue electrospun patches also show good biocompatibility and low cytotoxicity. The excellent anti-inflammatory and pro-collagen synthesis properties of the PLLA@Pue patch are demonstrated both in vitro in H2O2-stimulated mouse fibroblasts and in vivo in rat abdominal wall muscle defects. Therefore, it is believed that this multifunctional electrospun patch integrating anti-inflammatory and pro-collagen synthesis properties can overcome the limitations of traditional patches and has great prospects for efficient pelvic floor reconstruction.

18.
Adv Sci (Weinh) ; : e2308993, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38516757

RESUMO

Neural stem cells (NSCs) transplantation is an attractive and promising treatment strategy for spinal cord injury (SCI). Various pathological processes including the severe inflammatory cascade and difficulty in stable proliferation and differentiation of NSCs limit its application and translation. Here, a novel physico-chemical bifunctional neural stem cells delivery system containing magnetic nanoparticles (MNPs and methylprednisolone (MP) is designed to repair SCI, the former regulates NSCs differentiation through magnetic mechanical stimulation in the chronic phase, while the latter alleviates inflammatory response in the acute phase. The delivery system releases MP to promote microglial M2 polarization, inhibit M1 polarization, and reduce neuronal apoptosis. Meanwhile, NSCs tend to differentiate into functional neurons with magnetic mechanical stimulation generated by MNPs in the static magnetic field, which is related to the activation of the PI3K/AKT/mTOR pathway. SCI mice achieve better functional recovery after receiving NSCs transplantation via physico-chemical bifunctional delivery system, which has milder inflammation, higher number of M2 microglia, more functional neurons, and axonal regeneration. Together, this bifunctional NSCs delivery system combined physical mechanical stimulation and chemical drug therapy is demonstrated to be effective, which provides new treatment insights into clinical transformation of SCI repair.

19.
J Colloid Interface Sci ; 662: 69-75, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38335741

RESUMO

P2-type layered oxides for rechargeable sodium-ion batteries have drawn a lot of attention because of their excellent electrochemical performance. However, these types of cathodes usually suffer from poor cyclic stability. To overcome this disadvantage, in this work, novel ball-shaped concentration-gradient oxide Na0.67Ni0.17Co0.17Mn0.66O2 with P2 structure modified by Mn-rich surface is successfully prepared using co-precipitation method. The concentration of Mn increased from the inner core to the surface, endowing the material with an excellent cyclic stability. The cathode exhibits enhanced electrochemical properties than that of the sample synthesized by solid-state method and concentration-constant material. It shows 143.2 mAh/g initial discharge capacity and retains 131 mAh/g between 2 V and 4.5 V after 100 rounds. The significant improvement in the electrochemical properties of the sample benefits from the unique concentration-gradient structure, and the Mn-rich surface that effectively stabilizes the basic P2 structure. The relatively higher Ni content in the core leads to a slight improvement in the discharge capacity of the sample. This strategy may provide new insights for preparing layered cathodes for sodium-ion batteries with high electrochemical performance.

20.
Chemosphere ; 352: 141372, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311036

RESUMO

The mobility of arsenic (As) specie in agricultural soils is significantly impacted by the interaction between ferrihydrite (Fh) and dissolved organic material (DOM) from returning crop straw. However, additional research is necessary to provide molecular evidence for the interaction of toxic and mobile As (As(III)) specie and crop straw-based organo- Fh coprecipitates (OFCs). This study investigated the As(III) sorption behaviours of OFCs synthesized with maize or rape derived-DOM under various environmental conditions and the primary molecular sorption mechanisms using As K-edge X-ray absorption near edge structure (XANES) spectroscopy. According to our findings, pure Fh adsorbed more As(III) relative to the other two OFCs, and the presence of natural organic matter in the OFCs induced more As(III) adsorption at pH 5.0. Findings from this study indicated a maximum As(III) sorption on Ma (53.71 mg g⁻1) and Ra OFC (52.46 mg g⁻1) at pH 5.0, with a sharp decrease as the pH increased from 5.0 to 8.0. Additionally, As K-edge XANES spectroscopy indicated that ∼30% of adsorbed As(III) on the OFCs undergoes transformation to As(V) at pH 7-8. Functional groups from the DOM, such as O-H, COOH, and CO, contributed to As(III) desorption and its oxidation to As(V), whereas ionic strength analysis revealed inner complexation as the dominant As(III) sorption mechanism on the OFCs. Overall, the results indicate that the interaction of natural organic matter (NOM) with As(III) at higher pH promotes As(III) mobility, which is crucial when evaluating As migration and bioavailability in alkaline agricultural soils.


Assuntos
Arsênio , Arsênio/química , Zea mays , Compostos Férricos/química , Adsorção , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...